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1. Introduction

The most accomplished realization of the AdS/CFT correspondence conjectures the equiv-

alence between N = 4 Super Yang-Mills theory in four dimensions and type IIB string

theory on the AdS5 × S5 background [1 – 3]. A great deal of evidence supporting this

equivalence was found after the realization of a geometrical limit, for strings with large

angular momentum, leading to a plane-wave background where the string theory can be

exactly quantized [4, 5]. In this so called “BMN” limit, the closed strings energy spectrum

was shown to match the scale dimension spectrum of certain dual operators (a.k.a. BMN

operators) of the N = 4 gauge theory [6]. The key observation of Berenstein, Maldacena

and Nastase [6] was to note that the perturbative contributions to the anomalous dimen-

sions of BMN operators are suppressed by the square of the parameter associated with

the angular momentum of the dual string. This fact allowed to engineer a limit in which

perturbative computations on the gauge theory side could be extrapolated to strong cou-

pling and therefore make a true comparison with string theory computations beyond the

supergravity and BPS approximations.

Another remarkable result in the AdS/CFT large N approximation (N being the rank

of the gauge group) was the discovery of integrable structures governing the anomalous

dimensions of N = 4 SYM operators. Minahan and Zarembo [7] showed that the mixing

matrix of anomalous dimensions of single trace operators of scalar fields, at planar 1-loop

approximation, is given by an integrable SO(6) spin chain Hamiltonian. More recently, the

planar 1-loop anomalous dimensions for the full set of local operators were shown to be
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given by the spectrum of an integrable spin chain Hamiltonian for the full superconformal

group [8].

Some of these ideas can be extended to the case where one includes D-branes and open

strings. In these cases the spectrum of anomalous dimensions of the dual operators is given

by open spin chain Hamiltonians. It is possible to work out the boundary conditions for

the open spin chains and determine if they define integrable open spin chain models.

In [9], non-perturbative BPS states of finite energy on AdS5 × S5 were found by

considering compact D3-branes expanded in a S′3 ⊂ S5. These spherical D-brane solutions,

known as giant gravitons, are supersymmetric and it is also possible to construct them

by wrapping a S3 ⊂ AdS5 [10, 11]. The salient feature of all these configurations is

that the square of the radius of the D-brane is proportional to an angular momentum p

associated with a S1 ⊂ S5 rigid motion of the brane. This property marks an important

distinction between sphere and AdS giant gravitons: the angular momentum of sphere

giants has an upper bound. On the other hand, giants expanded in AdS have no bound

on their angular momentum. In [12 – 15] BPS dual operators to the above giant gravitons

were proposed. Quite interestingly, some non-BPS perturbations of these operators were

interpreted as open strings attached to giant gravitons in [18 – 25].1 Until recently, the

anomalous dimensions of these non-BPS operators were not studied as extensively as for

single trace BMN operators discussed in [6]. A computational difficulty being that non-

BPS operators dual to excited giant gravitons have a number of fields p, which taken of

order N , leads to the failure of the planar approximation. Nevertheless, it is possible to

work out the combinatorics and extract the leading order result in the large N limit.2

For sphere giant gravitons of maximal size, the resulting boundary conditions for the

one-loop anomalous dimension mixing matrix lead to an integrable open spin chain [20].

Computations at two-loop order have recently shown inconsistency with the Bethe Ansatz

[23, 24]. So, if the system remains integrable at higher loops, its integrability will not be

implemented by a Bethe Ansatz. For non-maximal sphere giants, already at one-loop order,

the Hamiltonian is not solvable by a Bethe Ansatz. However, and despite the presence of

continuous bands in its spectrum, the Hamiltonian seems to be integrable [25].

In this work we consider dual operators to open strings attached to AdS giant gravi-

tons. The gauge theory description of strings spinning along the AdS directions of the

giant requires to consider the action of covariant derivatives on the set of scalar operators.

This AdS spinning provides a new parameter L which will be crucial for implementing

the BMN scaling. We will deal with operators in a non-compact sl(2) sub-sector of the

superconformal group. To study the anomalous dimensions spectrum of the set we will

use the complete one-loop dilation operator of N = 4 SYM, constructed by Beisert in [26],

and restrict it to the sl(2) sub-sector. In the present work we will not be concerned on the

integrability of the Hamiltonian giving the one-loop anomalous dimensions. Instead, we

will focus our attention to explore a BMN limit on both dual descriptions of the system.

The paper is organized as follow. In section 2 we derive the large N one-loop mixing ma-

1Open strings can also be attached to defect (non-compact) D-branes. In the dCFT, matter fields serve

as boundaries for the spin chain and define an integrable open spin chain Hamiltonian [16, 17].
2Large N and planar limit are usually taken as synonymous in the literature.
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trix of anomalous dimensions for the set of operators dual to open strings attached to AdS

giant gravitons. Due to the variability in the number of sites in the standard spin chain

mapping, we introduce an alternative and more convenient labeling for the operators as

states of a bosonic lattice. We provide a semiclassical sigma-model action governing the

dynamics of the bosonic Hamiltonian with a large number of sites and also show evidence of

the existence of continuous bands in the spectrum of the bosonic Hamiltonian. In section 3

we briefly present the geometrical description of open strings on AdS giants and guided

by the AdS/CFT correspondence we see how to confer a geometrical interpretation on the

results of section 2. In section 4 we summarize and discuss the results of the paper. Two

appendices A and B are devoted to the relevant combinatorics for the computations of the

section 2, and the Penrose limit considered in section 3.

2. Anomalous dimensions for the duals of open strings on AdS giants

N = 4 SYM operators constructed from a single complex scalar field Z in the adjoint

representation of U(N) are half-BPS protected. Polynomial operators in Z have their R-

charge given by the degree of the polynomial and it is possible to establish a dictionary

between these gauge theory half-BPS operators and half-BPS objects in the dual string

theory [12 – 15]. For instance, a Schur polynomial in Z, written in the totally symmetric

representation of the permutations group Sp is identified with an AdS giant graviton. On

the other hand, a Schur polynomial written in the totally antisymmetric representation

is identified with a sphere giant graviton [12]. Explicitly, the local gauge theory operator

representing an AdS giant graviton with p units of angular momentum is proposed to be

Op = S
i1···ip
j1···jp

Zj1
i1
· · ·Zjp

ip
, (2.1)

where S
i1···ip
j1···jp

is a tensor totally symmetric in all its indices. Its definition together with

some useful properties are displayed in the appendix A.

Open strings attached to giant gravitons (spherical D3-branes) give rise to non-BPS

excitations. These states are mapped in the gauge theory to operators like (2.1) but with

a Z field replaced by a product of SYM fields and their derivatives, which, usually referred

to as a word W , represents the open string excitation state. Operators representing excited

sphere giant gravitons were previously studied in [18 – 25]. Extending the analysis to the

case of AdS giant graviton operators is particularly interesting since sphere and AdS giants

behave quite differently when their angular momentum p is increased: while the angular

momentum of a sphere giant is bounded by N [9], there is no upper bound for the angular

momentum of AdS giants (see eq. (3.5)).

Our attention will be focused on operators of the form,

OW
p = S

i1···ip
j1···jp

Zj1
i1
· · ·Zjp−1

ip−1
W

jp

ip
. (2.2)

In particular, we will be interested in open strings following almost null trajectories in

order to be able to make contact with gauge theory computations via a BMN limit [6].

This requires to consider open strings spinning fast around the AdS giant graviton. In gauge
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theory language, this AdS motion is represented by the presence of covariant derivatives

in the letters of the word W . It will be sufficient for our purposes to consider letters

constructed out from a single scalar field Z and covariant derivatives, taken in a unique

spacetime direction, acting on it. The infinitely many possible letters DnZ can be shown

to transform in the infinite dimensional spin j = −1
2 representation of a non-compact sl(2)

subalgebra of the conformal subalgebra. We will study AdS giant operators belonging to

this sl(2) sub-sector, which can be shown to be exactly closed [26]. Therefore, the words

W we will be considering in (2.2) take the form

W = Z(n1) · Z(n2) · · ·Z(nJ ) , (2.3)

where,

Z(n) =
1

n!
DnZ , D = D1 + iD2 . (2.4)

Here D1 and D2 are covariant derivatives and the product in (2.3) should be understood

as matrix multiplication. Our aim is to study the anomalous dimensions spectrum of

the set of operators (2.2) which is conjectured by AdS/CFT to coincide with the open

string excitation spectrum of the giant graviton. We will calculate the mixing matrix of

anomalous dimension at the large N one-loop approximation.

The complete one-loop dilatation operator D of N = 4 SYM is known [26]. We will

study its restriction to the AdS giant operators (2.2)-(2.3),

D = D0 +
g2
YMN

8π2
D1 + O(g4

Y M ) . (2.5)

In (2.5), D0 gives the classical dimension of the operator,

D0 =
∞∑

a=0

(a + 1)trZ(a)Ž(a) , with
(
Ž(a)

)i

j
=

δ

δ(Z(a))ji
. (2.6)

The one-loop contribution D1 in (2.5) is written as

D1 = N−1Ccd
ab : tr[Z(a), Ž(c)][Z

(b), Ž(d)] :

= N−1
(

Ccd
ab + Cdc

ab

)

:
(

Z(a)
)i

j

(
Ž(c)

)j

k

(

Z(b)
)k

l

(
Ž(d)

)l

i
:

−N−1
(

Ccd
ab + Cdc

ba

)

:
(

Z(a)
)i

j

(
Ž(c)

)j

k

(
Ž(d)

)k

l

(

Z(b)
)l

i
: , (2.7)

where sums over repeated indices have been omitted and colons indicate that the variations

Ž do not contract on letters within the same colons. The coefficients Ccd
ab can be obtained

from the complete one-loop dilatation operator when its action is restricted to the sl(2)

sub-sector. From eq. (3.14) of [26] one gets

(Cab
ab + Cba

ba) = −h(a) − h(b) ,

(C a b
a+n b−m + C b a

b−m a+n) =
δnm

|n| , n = −a, . . . , b 6= 0 , (2.8)
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where the harmonic numbers h(a) are defined as,

h(a) =

a∑

i=1

1

i
, h(0) = 0 . (2.9)

We will now analyze the mixing of the operators (2.2)-(2.4) under the action of D1. It will

be helpful to label the operators we will be working with as,

S(p ; a1, · · · aJ) := S
i1···ip
j1···jp

Zj1
i1
· · ·Zjp−1

ip−1
(Z(a1) · · ·Z(aJ ))

jp

ip
. (2.10)

The rank of the totally symmetric tensor p is associated with the angular momentum of

the giant along a S1 ⊂ S5. The number of letters J is dual to the angular momentum

of the open string excitation along the same S1 as for p, and the total number of covari-

ant derivatives L distributed in the word is dual to the open string excitation’s angular

momentum along a S1 ⊂ AdS5 direction. Thus, the integers an are subject to

J∑

n=1

an = L . (2.11)

It is necessary to normalize the operators (2.10) so that in the large N limit, their free

correlation functions are of order one. We define,

S̃(p ; a1, · · · aJ) :=

√

(N + 1)!

(N + p − 1)!p!(p − 1)!NJ+1
S(p ; a1, · · · aJ) . (2.12)

We will exclude the possibility of a1 or aJ being zero, since in those cases the identity,

S
i1···ip
j1···jp

Zj1
i1
· · ·Zjp−1

ip−1
(ZW )

jp

ip
=

1

p
S

i1···ip+1

j1···jp+1
Zj1

i1
· · ·Zjp

ip
W

jp+1

ip+1
− 1

p
S

i1···ip
j1···jp

Zj1
i1
· · ·Zjp

ip
tr(W ) ,

(2.13)

allows to write an operator with a Z at the extreme of a word, the lhs, in terms of: a bigger

giant with a shorter string (first term, already accounted in the set), and an unexcited D-

brane plus a closed string (second term). When computing the mixing among operators (see

below), the proper account of the normalization factors for operators shows that the last

term in (2.13) is suppressed by a factor 1/
√

p . Since while taking the large N limit we are

taking p ∼ N , the contribution of the last term in (2.13) is irrelevant to the computations.

The action of D1 on operators S̃(p ; a1, · · · aJ) is determined by the two derivatives

Ž present in (2.7). The possibilities are: (I) both derivatives act on letters of the word

W or (II) one derivative acts on a letter of the word and the other on one of the Z fields

contracted with the symmetric tensor.3

(I) A straightforward computation shows that the leading order contribution to D1 in the

large N limit comes from the case where both derivatives act on consecutive4 letters of the

3When both derivatives act on Z fields contracted with the symmetric tensor, the contribution is pro-

portional to C00
00 which is zero (cf. (2.8)).

4Contributions from the action of Ž on non-consecutive letters are sub-leading.
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word W . The result is

D
(I)
1 S(p ; a1, · · · aJ) = −(Ca1a2

ab + Ca2a1
ba )S(p ; a, b, a3, · · · aJ) (2.14)

−(Ca2a3
ab + Ca3a2

ba )S(p ; a1, a, b, · · · aJ) − · · ·

−(C
aJ−1aJ

ab + C
aJaJ−1

ba )S(p ; a1, · · · aJ−2, a, b) + O(
1

N
) .

Using the identity (2.13) we rewrite apart the cases a = 0 in the first line and b = 0 in the

last line. Taking into account the normalization of the operators (2.12) we obtain,

D
(I)
1 S̃(p ; a1, · · · aJ) = −(Ca1a2

a′b + Ca2a1
ba′ ) S̃(p ; a′, b, a3, · · · aJ)

−(Ca2a3
ab + Ca3a2

ba ) S̃(p ; a1, a, b, · · · aJ) − · · ·
−(C

aJ−1aJ

ab′ + C
aJaJ−1

b′a ) S̃(p ; a1, · · · aJ−2, a, b′)

−
√

1 +
p

N
(Ca1a2

0b + Ca2a1
b0 ) S̃(p + 1; b, a3, · · · aJ)

−
√

1 +
p

N
(C

aJ−1aJ

a0 + C
aJaJ−1

0a ) S̃(p + 1; a1, · · · aJ−2, a)

+O(
1√
p
) . (2.15)

Here a primed repeated index indicates that its summation excludes the value zero. The last

two terms in (2.15) show that the dilatation operator mixes states with words of different

lengths. This instance is similar to that of non-maximal sphere giant gravitons [21, 25] and

the mixing between operators with words of different lengths could have been expected.

The variation in the number of letters of the word W can be pictured, from the string

point of view, as coming from the exchange of the angular momentum along the S1 ⊂ S5

between the string and the giant. The open string gets dragged by the movement of the

giant graviton while propagating. Notice also that the factor describing the mixing of

words of different lengths is
√

1 + p/N . The sign inside the square root has changed with

respect to the similar factor appearing in the sphere giant case. This last fact reflects that

p can increase arbitrarily for AdS giants.

(II) The leading order result, considering as before p ∼ N , is

D
(II)
1 S̃(p ; a1, · · · aJ) = −

(

1 +
p

N

)

(Ca10
b0 + C0a1

0b ) S̃(p ; b, a2, · · · aJ)

−
(

1 +
p

N

)

(CaJ0
b0 + C0aJ

0b ) S̃(p ; a1, · · · aJ−1, b)

−
√

1 +
p

N
(C0a1

a′b + Ca10
ba′ ) S̃(p − 1; a′, b, a2, · · · aJ)

−
√

1 +
p

N
(CaJ0

ab′ + C0aJ

b′a ) S̃(p − 1; a1, · · · aJ−1, a, b′)

− p

N
(C0a1

0b + Ca10
b0 + Ca10

0b + C0a1
b0 ) S̃(p ; b, a2, · · · aJ)

− p

N
(C0aJ

0b + CaJ0
b0 + Ca10

0b + C0a1
b0 ) S̃(p ; a1, · · · aJ−1, b)

+O(
1√
p
) . (2.16)
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Defining the parameter

α ≡
√

1 +
p

N
. (2.17)

and using the coefficients (2.8), the result (2.15) can be rephrased as

D
(I)
1 S̃(p ; a1, · · · aJ) = (h(a1) + h(a2)) S̃(p ; a1, · · · aJ)

−
a1−1∑

n=−a2

1

|n| S̃(p ; a1 − n, a2 + n, , · · · aJ)

+(h(a2) + h(a3)) S̃(p ; a1, · · · aJ)

−
a2∑

n=−a3

1

|n| S̃(p ; a1, a2 − n, a3 + n, · · · aJ) − · · ·

+(h(aJ−1) + h(aJ )) S̃(p ; a1, · · · , aJ )

−
aJ−1−1
∑

n=−aJ

1

|n| S̃(p ; a1, · · · , aJ−1 − n, aJ + n)

− α

a1
S̃(p + 1; a1 + a2, a3, · · · aJ)

− α

aJ
S̃(p + 1; a1, · · · , aJ−1 + aJ) + O(

1√
p
) . (2.18)

The first six lines can be identified with the action of an open sl(2) spin chain Hamiltonian

under the standard identification Word ↔ Spin Chain State [7, 8, 26]. The last two lines

indicate that sites can be annihilated at the boundaries of the chain. Similarly, (2.16) can

be rewritten as,

D
(II)
1 S̃(p ; a1, · · · aJ) = α2(h(a1) + h(aJ)) S̃(p ; a1, · · · aJ)

−α

a1∑

n=1

1

n
S̃(p − 1;n, a1 − n, a2, · · · aJ)

−α

aJ∑

n=1

1

n
S̃(p − 1; a1, · · · , aJ−1, aJ − n, n)

−(α2 − 1)(h(a1 − 1) + h(aJ − 1)) S̃(p ; a1, · · · aJ)

+O(
1√
p
) . (2.19)

The first and last lines represent the action of identity terms, while the two middle ones

show that sites can be created at the boundaries of the chain.

Describing different words as open sl(2) spin chain states is not the most convenient

picture. Since sites can be created or annihilated at the boundaries, one would have to

deal with spin chains of variable length. In order to find a more appropriate labeling of

the words set, it is crucial to note that the total number of covariant derivatives in the

word W is conserved under the action of the 1-loop dilatation operator. We choose then

to label the words (2.3) by stating the number of Z fields between consecutive covariant

– 7 –
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derivatives. Consider, for instance, the word

Z(1)Z(0)Z(2)Z(1) ∼ DZZDDZDZ . (2.20)

We specify it by indicating that there are two Zs between the first and the second derivative

D, no one between the second and the third and one Z between the third and the fourth

derivative. A word with L + 1 covariant derivatives will then be labeled as a bosonic state

of a lattice with L sites,

DZn1DZn2D · · · DZnLDZ ↔ |n1, n2, · · · , nL〉 , (2.21)

with ni = 0, 1, . . .. The variability of the sl(2) spin chain length is translated, in the

labeling (2.21), into a variability of the total occupation number of the lattice. This

variability will take place at the size of the giant graviton expense. However, since the

probability of a Z entering or leaving the word is the same, we expect that p can be

consistently taken as a constant. A posteriori we will check that occupation number of Zs

for the ground state is much smaller than p. Summarizing, the total number of bosons in

the bosonic lattice is equal to the total number of Zs in the word.

To translate the action of D1 (2.18)-(2.19) to the bosonic language (2.21), we introduce

shift operators â†i and âi that rise and lower the occupation number of ith site

â†i |ni〉 = |ni + 1〉 , âi|ni〉 = |ni − 1〉 . (2.22)

Note that their action does not involve the square roots of the standard oscillator-like

operators, therefore,

âiâ
†
i = I , â†i âi = I − P 0

i ≡ I − |0〉〈0|i . (2.23)

Consider the word that begins as

a1 a2

Z(a1)Z(a2) · · · ∼
︷ ︸︸ ︷

D · · · D Z
︷ ︸︸ ︷

D · · · D Z · · · .
(2.24)

The only restriction we have is that a1 6= 0 (cf. (2.13)). The first a1 − 1 sites are empty

states in the bosonic language and the a th
1 is necessarily occupied. The amount of bosons

occupying it depends on the subsequent ai,

Z(a1)Z(a2) · · · ↔







a1 − 1

|
︷ ︸︸ ︷

0, · · · , 0, 1, · · · 〉 if a2 6= 0 ,

a1 − 1

|
︷ ︸︸ ︷

0, · · · , 0, 2, · · · 〉 if a2 = 0 ∧ a3 6= 0 ,
...
...

(2.25)

Let us consider in detail the translation of some of the terms in (2.18) and finally present

the complete result. We can think of D1 as the Hamiltonian of a bosonic lattice. Defining

– 8 –
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H = λD1, the diagonal terms in (2.18) can be understood as amounts of energy for each

site occupied. Their total contribution is

Eosc ∼ λ(h(a1) + 2h(a2) + · · · + 2h(aJ−1) + h(aJ )) , (2.26)

where we have introduced the ’t Hooft parameter λ =
g2

Y M
N

8π2 . This total contribution can

be obtained in the following way: for each site of the lattice there is no contribution if

it is empty, if the site is occupied the amount is independent of the number of bosons in

the site.5 However, the amount for each occupied site depends on the occupancy of their

neighbors. The contribution in question is h(eL + 1) + h(eR + 1), where eL is the number

of consecutive empty sites (if any) to the left and eR is the number of consecutive empty

sites (if any) to the right. These diagonal terms of the lattice Hamiltonian are written as

Hosc = λ
L−1∑

m=1

L−m∑

l=1

1

m
(â†l âl + â†l+mâl+m)

(
l+m−1∏

s=l+1

P 0
s

)

+λ

L∑

l=1

1

l
â†l âl

(
l−1∏

s=1

P 0
s

)

+

L∑

l=1

1

L + 1 − l
â†l âl

(
L∏

s=l+1

P 0
s

)

. (2.27)

There are also terms in (2.18) that represent the exchange of n covariant derivatives between

consecutive letters of the word. In the bosonic labeling, they are seen as hopping terms.

Since more than one covariant derivative can be exchanged, the hopping is not only between

nearest neighbors. A boson can be exchanged between non-nearest neighbor sites as long

as all the sites between them are empty. These hopping terms can be written as,

Hhopping = −λ

L−1∑

m=1

L−m∑

l=1

1

m
(â†l+mâl + â†l âl+m)

(
l+m−1∏

s=l+1

P 0
s

)

. (2.28)

A similar analysis can be repeated to rephrase the terms corresponding to the creation and

annihilation of letters at the boundaries as well as the diagonal terms in (2.19). Altogether,

the action of D1 on the operators corresponding to open strings on AdS giant gravitons, is

given by the action of the following bosonic lattice Hamiltonian,

H = λ
L−1∑

m=1

L−m∑

l=1

1

m
(â†l − â†l+m)(âl − âl+m)

(
l+m−1∏

s=l+1

P 0
s

)

(2.29)

+λ

L∑

l=1

1

l

(

â†l âl + α2 − α(âl + â†l ) + (1 − α2)P 0
l

)
(

l−1∏

s=1

P 0
s

)

+λ
L∑

l=1

1

L + 1 − l

(

â†l âl + α2 − α(âl + â†l ) + (1 − α2)P 0
l

)
(

L∏

s=l+1

P 0
s

)

,

The terms proportional to α in the second and third lines of (2.29) represent sinks and

sources for bosons. Bosons can be created or annihilated at the lth site of the lattice, as long

5This is the reason for having chosen the shift operators (2.22) instead of ordinary creation and annihi-

lation operators
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as all sites in between the lth site and one of the boundaries are empty. As a consequence,

the total number of bosons does not commute with the Hamiltonian. This represents a

serious difficulty in trying to diagonalize (2.29): their eigenvalues will not have a definite

number of bosons. Nevertheless, it is possible to build a uniform coherent eigenstate with

zero eigenvalue. This is nothing but the ground state of (2.29),

|Ψ0〉 =
∣
∣α−1, . . . , α−1

〉
=

(
α2 − 1

α2

)L/2 ∞∑

n1,...,nL=0

α−(n1+···+nL)|n1, . . . , nL〉 . (2.30)

However, we do not know how to solve the eigenvalue problem in general.

2.1 The semiclassical limit

We will show in this section that the dynamics, in the L → ∞ limit, given by the Hamilto-

nian (2.29) is governed by a semiclassical sigma-model action. The action will be obtained

by taking a continuum limit of the path integral representation of the evolution opera-

tor written in a coherent states basis. It was shown in [27] that the semiclassical action

obtained for the Heisenberg spin chain Hamiltonian, which describes the planar 1-loop

anomalous dimension of single trace operators in a su(2) sub-sector, can be related to the

closed string action when appropriate gauge choice and specific limits are taken. A similar

identification was done for single trace operators in a sl(2) sub-sector in [28 – 30].

The semiclassical action for the dynamics in the L → ∞ limit reads,

S =

∫

dt

(

i〈z1 . . . zL|
d

dt
|z1 . . . zL〉 − 〈z1 . . . zL|H|z1 . . . zL〉

)

, (2.31)

We are dealing with a bosonic Hamiltonian and the coherent states we use are defined to

be eigenstates of the shift operator â,

|z〉 =
√

1 − |z|2
∞∑

n=0

zn|n〉 , with |z| < 1 , (2.32)

As known, coherent states constitute a non-orthogonal and overcomplete basis. The over-

lapping between states is

〈z|z′〉 =

√

1 − |z|2
√

1 − |z′|2
1 − z̄z′

. (2.33)

We parameterize the coherent states as zl(t) = ul(t)e
iφl(t). The first term in the integrand

o (2.31) takes then the form

i〈z1 . . . zL|
d

dt
|z1 . . . zL〉 = −

L∑

l=1

u2
l φ̇l

1 − u2
l

. (2.34)

In the limit of large L, the functions ul(t) and φl(t) can be considered to be continuous

functions u(t, σ) and φ(t, σ) with 0 ≤ σ ≤ 1, the sum over l being converted into an integral

over σ,

i〈z1 . . . zL|
d

dt
|z1 . . . zL〉 = −L

∫ 1

0
dσ

u2φ̇

1 − u2
. (2.35)
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Here a dot denotes a derivative with respect to t. For the second term in the integrand

of (2.31) one obtains

〈H〉 = 〈z1 . . . zL|H|z1 . . . zL〉

= λ

L−1∑

m=1

L−m∑

l=1

1

m
(ul+m − ul)

2

(
l+m−1∏

s=l+1

(1 − u2
s)

)

−λ

L−1∑

m=1

L−m∑

l=1

1

m
2ulul+m(cos(φl+m − φl) − 1)

(
l+m−1∏

s=l+1

(1 − u2
s)

)

+λ

L∑

m=1

1

m

(
α2u2

m + 1 − 2αum cos φm

)

(
m−1∏

s=1

(1 − u2
s)

)

+λ

L∑

m=1

1

L + 1 − m

(
α2u2

m + 1 − 2αum cos φm

)

(
L∏

s=m+1

(1 − u2
s)

)

. (2.36)

In the large L limit of (2.36), sums over l (in the first two lines) are going to be approximated

by integrals over a continuous variable σ, while sums over m are going to be approximated

by geometric sums. Identifying fl ' f(σ),

fl+m ' f(σ) +
m

L
f ′(σ) +

1

2

(m

L

)2
f ′′(σ) + O(m3/L3) . (2.37)

Approximating the sums as indicated, the contributions to (2.36) can be gathered order

by order in powers of 1/L. The result is

〈H〉=−λ

L

∫ 1

0
dσ

1

u4

(
u′2 + u2φ′2

)
(2.38)

+λ
L∑

m=1

(1 − u2)
m−1

m

(
α2u2 + 1 − 2αu cos φ

)

∣
∣
∣
∣
∣
σ=0

+
λ

L

L∑

m=1

m − 1

m
(1 − u2)m−1

(

2u′(u − α cos φ) + 2αu sin φφ′

−(m − 2)
uu′

1 − u2
(u2 + α2 − 2αu cos φ) − m(1 − α2)uu′

)∣
∣
∣
∣
σ=0

+λ
L∑

m=1

(1 − u2)
m−1

m

(
α2u2 + 1 − 2αu cos φ

)

∣
∣
∣
∣
∣
σ=1

+
λ

L

L∑

m=1

m − 1

m
(1 − u2)m−1

(

2u′(u − α cos φ) + 2αu sin φφ′

−(m − 2)
uu′

1 − u2
(u2 + α2 − 2αu cos φ) − m(1 − α2)uu′

)∣
∣
∣
∣
σ=1

+ O(1/L2) .

Primes denote derivatives with respect to σ. The bulk term of this semiclassical Hamil-

tonian is of order λ/L. However, the boundary terms leading order is λ. Then, the

semiclassical configurations with the lowest anomalous dimension are going to be those
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satisfying the following Dirichlet boundary conditions,

(
α2u2 + 1 − 2αu cos φ

)∣
∣
σ=0,1

= 0 . (2.39)

This is equivalent to require,

u|σ=0,1 =
1

α
,

φ|σ=0,1 = 0 . (2.40)

Note that imposing the boundary conditions (2.40) cancels not only the boundary terms of

order λ but also those of order λ/L. Finally, the semiclassical action for the large L limit

with boundary conditions (2.40) is,

S =−L

∫

dt

∫ 1

0
dσ

(

u2φ̇

1 − u2
− λ

L2u4

(
u′2 + u2φ′2

)

)

. (2.41)

At the end of section 3.1, we will give a geometrical interpretation of the coherent states

parameters u and φ. To this end, it is convenient to introduce the variable r ≡ 1/u, taking

values r ∈ (1,∞). The action (2.41) is rewritten as

S =−L

∫

dt

∫ 1

0
dσ

(

φ̇

r2 − 1
− λ

L2

(
r′2 + r2φ′2

)

)

, (2.42)

and the Dirichlet boundary conditions (2.40) as,

r|σ=0,1 = α =

√

1 +
p

N
, (2.43)

φ|σ=0,1 = 0 . (2.44)

The ground state of this semiclassical action is the constant configuration r = α and φ = 0,

which is a coherent state z = 1/α uniformly distributed along the lattice. This is precisely

the ground state (2.30).

2.2 Continuous bands

In this section we argue that the Hamiltonian (2.29) has continuous bands in its spectrum.

The variability in the mean occupation number together with these continuous bands indi-

cate that it is possible to construct states whose evolution gives a growing mean occupation

number.

Among the family of Hamiltonians (2.29) we are only able to exactly diagonalize the

case L = 1. The one site, the Hamiltonian is,

H = 2λ
(

â†â + α2 − α(â + â†) + (1 − α2)P 0)
)

= 2λα2

(

â†â +
1

α2
− 1

α
(â + â†)

)

. (2.45)
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A ground state and a continuum after a gap constitute the whole set of eigenstates,

|Ψ0〉 =

(
α2 − 1

α2

)1/2 ∞∑

n=0

1

αn
|n〉 , (2.46)

|Ψ(k)〉 =

∞∑

n=0

(

sin kn − 1

α
sin k(n + 1)

)

|n〉 , with 0 ≤ k ≤ π . (2.47)

The energy of the ground state is zero, while the energy of the states in the band is

E(k) = 2λ(1 − 2α cos k + α2) . (2.48)

The gap between the ground state and the band is

2λ(α − 1)2 . (2.49)

States in the band satisfy a delta-function normalization. Normalizable wave-packets can

be built out of them, whose mean occupation numbers grow monotonically as evolution

takes place.

To analyze the existence of continuous bands for larger L we consider the system

semiclassically. As we have already argued, the action (2.31) governs the dynamics of our

system in the L → ∞ limit. The idea we pursue is simple: energies for which orbits in

phase space are open, correspond to a continuum in the spectrum of the quantized system.

To begin with, notice that conjugate momenta pul
and pφl

are subject to constraints.6

Therefore, the phase space coincides with the configuration space (ul, φl), which is a prod-

uct of L discs of radii r=1. We are interested in the values of the semiclassical Hamilto-

nian (2.36), which allow open orbits in the phase space. Since the energy is a conserved

quantity, orbits are constrained to hypersurfaces of constant energy. Therefore, open orbits

are possible for energies, whose hypersurfaces intersect the boundary of the phase space.

We are be only interested in the minimal amount of energy that a state would need to

reach a continuous band. Then, we have to compute the minimum of each of the functions

resulting when one of the ul takes the values 1. These L functions are bounded from below

by polynomials on ul

〈H〉|uk=1 ≥ Mk
L = λ

L−1∑

m=1

L−m∑

l=1

1

m
(ul+m − ul)

2

(
l+m−1∏

s=l+1

(1 − u2
s)

)∣
∣
∣
∣
∣
uk=1

(2.50)

+λ
L∑

m=1

1

m

(
α2u2

m + 1 − 2αum

)

(
m−1∏

s=1

(1 − u2
s)

)∣
∣
∣
∣
∣
uk=1

+λ

L∑

m=1

1

L + 1 − m

(
α2u2

m + 1 − 2αum

)

(
L∏

s=m+1

(1 − u2
s)

)∣
∣
∣
∣
∣
uk=1

.

which are obtained by setting all angles φl to zero. The minima of the Mk
L then give us

the minima of 〈H〉|uk=1. It is straightforward to verify that the stationary point equations

6From (2.34) one gets pul
= 0 and pφl

=
u2

l

u2

l
−1

.
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are satisfied with the following values,

1

u∗
l

=

(
1 − α

k

)

l + α if l ≤ k ,

1

u∗
l

=

(
α − 1

(L + 1 − k)

)

l +
L + 1 − kα

(L + 1 − k)
if l > k . (2.51)

One can also see that these critical points are minima of each Mk
L, and the energy evaluated

on them is

〈H〉|ul=u∗

l
,φl=0 =

λ(L + 1)(α − 1)2

k(L + 1 − k)
. (2.52)

It is not difficult to see that the intersection where the central site takes the value one

gives a minimum of the expression (2.52). Summarizing, the minimal amount of energy for

having open orbits is

Econt =

{
4λ(α−1)2

(L+1) if L is odd ,
4λ(L+1)(α−1)2

L(L+2) if L is even .
(2.53)

This analysis enables us to conclude that in the large L limit, the minimal energy to reach

the lowest continuous band in the spectrum is,

Econt =
4λ(α − 1)2

L
. (2.54)

Operators dual to long semiclassical strings, with energy order λ/L, could show a growing

occupation number. The existence of these configurations indicate that the D-brane might

be unstable if it is excited with long strings.

It is possible to give a picture of these configurations from the geometrical viewpoint.

The motion of the giant along the ψ direction of the S5 exerts centrifugal forces on long

strings attached to it. For sufficiently long strings, these forces could excess the string

tension. To see if this phenomenon constitutes a D-brane instability, it is necessary to

study how the diminution in giant size back-react on these configurations with growing

occupation number. However, this analysis is beyond the validity of the approximations

we made in the derivation of (2.29).

3. Open strings on AdS giant gravitons

Let us briefly state some of the geometrical properties of open strings ending on AdS

giant gravitons. We will see that some of them have already appeared as outcomes of the

Hamiltonian (2.29).

We write the metric of AdS5 × S5 in global coordinates

ds2 = R2(− cosh2ρ dt2 + dρ2 + sinh2ρ dΩ3
2 + dθ2 + cos2θ dψ2 + sin2θ dΩ′

3
2
) , (3.1)

and the 3-sphere metrics as

dΩ3
2 = dϕ2 + cos2ϕdη2 + sin2ϕdξ2 ,

dΩ′
3
2

= dϕ′2 + cos2ϕ′dη′
2
+ sin2ϕ′dξ′

2
. (3.2)
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A RR 4-form potential supports the geometry, its self-dual field strength possessing N

units of flux on the S5. The supergravity equations of motion relate the radius R in (3.1)

to the F5 flux on S5 according to R4 = 4πgsNα′2.

Giant gravitons are spinning spheric D3-branes that expand in either the 3-spheres Ω′
3

or Ω3. They spin rigidly along the ψ direction inside the S5 and are located either at ρ = 0

and θ = θ0, or at θ = 0 and ρ = ρ0 [9 – 11]. The former correspond to D-branes expanded

into a S′3 ⊂ S5 and we refer to them as sphere giant gravitons. The latter, which we call

AdS giant gravitons, correspond to D-branes expanded into a S3 ⊂ AdS5 and the previous

section was devoted to study of their gauge theory dual operators.

We denote by (τ, σ1, σ2, σ3) the world-volume coordinates of an AdS giant. The D3-

brane equations of motion are solved by choosing the embedding space-time coordinates

to be given by

t = τ , ρ = ρ0 , θ = 0 , ψ = τ

ϕ = σ1 , η = σ2 , ξ = σ3 . (3.3)

Independently of the position ρ0 of the giant, the angular velocity is ψ̇ = 1. Thus, its

center of mass, located at ρ = 0, moves along a null trajectory. Nevertheless, each element

of the giant travels in a time-like orbit.

The radius of the spherical giant gravitons and their angular momentum p along the

ψ direction inside the S5 are given in terms of the radial AdS coordinate ρ by

r = R sinh ρ0 , (3.4)

p = N sinh2 ρ0 . (3.5)

From this equations one gets that r2 = 2
√

πgsα
′p/

√
N . The DBI action, of which giant

gravitons are D3-branes solutions, is then a valid approximation if p À
√

N .

Weakly excited strings with a large angular momentum, i.e. those traveling along al-

most null trajectories on any spacetime, can be approximated as moving on an effective

pp-wave geometry [6]. We will be interested in open strings having large angular momen-

tum along ψ, the Penrose limit can be understood as a large N limit, with the angular

momentum p growing proportional to N . By looking at (3.4) and (3.5) one realizes that

the value ρ0 must be kept constant and therefore the radius of the giant diverges. The

open string will be effectively attached to a flat D3-brane in a pp-wave background.7

For definiteness, let us consider a trajectory along ψ and η, keeping ϕ = 0. A null

trajectory requires

R2(− cosh2 ρ0ṫ
2 + sinh2 ρ0η̇

2 + ψ̇2) = 0 . (3.6)

Since we want the trajectory to be contained in the D-brane world-volume, the parametriza-

tion (3.3) ṫ = 1 and ψ̇ = 1 necessarily implies η̇ = ±1. This means that the coordinates t,

7An almost null open string trajectory attached to an AdS giant requires moving along the ψ direction

inside the S5 and a direction parallel to the giant (see (3.6)). So, the present situation is somehow similar

to the case of non-maximal giants in the S5 [21, 25] and some exchange of angular momentum between the

D-brane and the open string is expected.
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ψ and η are equally rated along this null trajectory. This null trajectory is a null geodesic

of AdS5 × S5 and we use it to take a Penrose limit (see appendix B). Looking at the open

string spectrum on the pp-wave background (B.16), it is natural to expect for the first

excited states of (2.29), the following eigenvalues in the limit of large L but λ(α2 − 1)2/L2

fixed and small,

En ≈ λπ2(α2 − 1)2n2

L2
. (3.7)

However, at the moment we do not know how to diagonalize the (2.29) and make an explicit

comparison with (3.7). What we do know is the groundstate (2.30). Computing its mean

occupation number is very elucidative,

1

L
〈Ψ0|n̂|Ψ0〉 =

1

α2 − 1
=

N

p
. (3.8)

This computation gives, in average, the number of Z fields in the word appended over the

number of covariant derivatives. The former ones carry the R-charge identified in the dual

description with angular momentum of the string along ψ. The covariant derivatives carry

the spin charge identified in the dual description with angular momentum of the string

along η.

Now, we can use the null trajectory (3.6) to compute the ratio of angular momentum

components Jψ and Jη of a massless particle traveling along it. The ratio of the angular

momenta in both angular directions is

Jψ

Jη
=

1

sinh2 ρ0
=

N

p
, (3.9)

where p is the angular momentum of the giant defined in (3.5). This result coincides exactly

with (3.8). Thus, the ground state (2.30) corresponds to the point like string. This enforces

our interpretation of the first excitations of the Hamiltonian (2.29) as excitation modes of

the open string in the pp-wave background.

3.1 Semiclassical open strings

Let us now consider a long open string ending on the AdS giant graviton, that feels the

full AdS5 × S5 background. One can see that in the large angular momentum limit the

system is well described by its classical action [31].

We concentrate on those coordinates subject to Dirichlet boundary conditions. We will

eliminate the invariance of reparametrizations of the world-sheet by fixing a uniform gauge,

instead of the conformal gauge [32]. This particular gauge turns out to be the appropriate

one according to the particular labeling of the operators we used in the dual gauge theory.

We closely parallel the gauge fixing done in [21] and [25] for open strings ending on

sphere giant gravitons. Let us begin by expressing the bosonic Polyakov action in terms of

phase space variables. To do that, we use the conjugate momenta

pµ = −Gµν(A∂0x
ν + B∂1x

ν) , (3.10)
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where A =
√−gg00, B =

√−gg01 and gab is the worldsheet metric. The Polyakov action

then takes the form

Sp =
1

2πα′

∫

dτ

∫ π

0
dσL , (3.11)

where,

L = −1

2

√−ggabGµν∂aX
µ∂bX

ν

= pµ∂0x
µ +

1

2
A−1 [Gµνpµpν + Gµν∂1x

µ∂1x
ν ] + BA−1pµ∂1x

µ . (3.12)

A and B can be thought as Lagrange multipliers implementing the constraints

Gµνpµpν + Gµν∂1x
µ∂1x

ν = 0 , (3.13)

pµ∂1x
µ = 0 . (3.14)

We will consider an open string moving with the giant graviton and along it. In terms

of the global coordinates chosen in (3.1) the string will evolve only on (t, ρ, η, ψ), i.e. the

string is propagating on an AdS3 × S1 ⊂ AdS5 × S5,

ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρdη2 + dψ2) . (3.15)

In these coordinates the position of the giant is given by

ρ = arg cosh

√

1 +
p

N
, ψ = t . (3.16)

Now, we change to a coordinate system in which the giant gravitons is static

r = cosh ρ , φ = ψ − t . (3.17)

We make this election of coordinates guided by the boundary conditions (2.43) and (2.44).

The metric (3.15) becomes

ds2 = R2(−(r2 − 1)dt2 + 2dtdφ + dφ2 +
dr2

r2 − 1
+ (r2 − 1)dη2) . (3.18)

Calling L the total angular momentum of the string along η

L =
1

2πα′

∫ π

0
dσpη . (3.19)

As originally done in [33], we choose a gauge in which pη is homogeneously distributed

along the string, i.e. it is independent of σ. Moreover, we take τ to be coincident with the

global time t,

t = τ , pη = 2α′L . (3.20)

The election of distributing pη homogeneously is also inspired in the field theory analysis

of the previous section. The spacing in the bosonic lattice was given by the covariant
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derivatives. So, the index l running from 1 to L in (2.29) counts uniformly covariant

derivatives. Then, in the continuum limit, the action (2.42) has the spin charge associated

to the covariant derivative uniformly distributed in the variable σ. This is why we expect

the appearance of an action similar to (2.42) by fixing a gauge where pη is constant. On

the contrary, if one worked with the labeling of the words as sl(2) spin chains, the discrete

index of the chain would count uniformly scalar fields Z. In that case, the semiclassical

action obtained projecting with sl(2) coherent states, would be similar to a Polyakov action

in a gauge where the momentum pψ is homogeneously distributed [28, 29].

The implementation of constraints (3.13) and (3.14) leads to a lagrangian of the form

L = V ipi −
√

M ijpipj + M , (3.21)

where the indices i, j = φ, r. The coefficients V i, M ij and M depend on the coordinates

and their derivatives,

V φ = φ̇ + 1 ,

V r = ṙ , (3.22)

Mφφ = r2

(

1 +
R4

4α′2L2
(r2 − 1)φ′2

)

,

Mφr = M rφ = r2(r2 − 1)
R4

4α′2L2
r′φ′ ,

M rr = r2(r2 − 1)

(

1 +
R4

4α′2L2
r′

2
)

, (3.23)

M = 4α′2L2 r2

r2 − 1
+ R4r2φ′2 + R4 r2

r2 − 1
r′

2
. (3.24)

As usual, dots and primes denote derivatives with respect to τ and σ respectively. Accord-

ing to our conventions, R4/α′2 = λ/8π2. Also, recall that the coordinates r and φ satisfy

Dirichlet boundary conditions,

r|σ=0,π =

√

1 +
p

N
, (3.25)

φ|σ=0,π = const. (3.26)

Variations of the momenta pr and pφ give rise to algebraic equations of motion that can

be used to solve the momenta,

pi = MijV
j

√

M

1 − MklV kV l
, (3.27)

where Mij is the inverse of M ij . With these expressions for the momenta, the Lagrangian

can be written as

L = −
√

(1 − MijV iV j)M , (3.28)

Now, we assume that time derivatives are small. More precisely, we consider ∂0x
µ ∼ λ/L2

and take this parameter λ/L2 ¿ 1 [27]. For later convenience, we rescale σ → σ/π and
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obtain, to lowest order in the expansion on this small parameter, the following action

S ≈ −L

∫

dt

∫ 1

0
dσ

(

φ̇

r2 − 1
− λ

L2
(r′2 + r2φ′2) + O

(
λ2

L4

))

. (3.29)

Notice the factor L in front of the action, which L → ∞ in the limit we are considering.

Then, it can play the rôle of the inverse of the Planck constant in a semiclassical limit.

Remarkably, (3.29) and boundary conditions (3.25)-(3.26) coincide with the semiclassi-

cal (2.42) action for the lattice Hamiltonian and boundary conditions (2.43)-(2.44). There-

fore, it is natural to identify coherent states parameters u and φ with global coordinates

1/ cosh ρ and ψ − t respectively. Moreover, in this interpretation of the semiclassical co-

herent state action as the sigma model action corresponding to an open string, different

labelings of the operators can be accounted by different ways of fixing the world-sheet

reparametrization invariance of the Polyakov action.

4. Discussion

We have studied excited AdS giant gravitons and their gauge theory dual operators. We

started describing the gauge invariant operators associated to open strings ending on AdS

giant gravitons. To study their scale dimensions spectrum, we made use of the dilatation

operator computed in [26] restricted to a sl(2) sub-sector of the super-conformal group. The

mixing matrix of anomalous dimensions, at the one-loop approximation, corresponded to

the Hamiltonian of an open sl(2) spin chain. The Hamiltonian included terms mixing spin

chains of different lengths and at that point we introduced a labeling for the operators that

enabled us to interpret the mixing matrix of anomalous dimensions as the Hamiltonian of a

bosonic lattice. In analogy with the case of non-maximal sphere giants [21], the variability

in the spin chain length was translated into a variable total number of bosons occupying

the lattice. Interestingly, the Hamiltonian turned out to be non-quadratic in the lowering

and raising operators and included non-nearest neighbor interactions. In spite of that,

we showed that lattices with a large number of sites were effectively described by a local

non-linear sigma-model action.

We were not able to compute the complete spectrum of the bosonic Hamiltonian.

However, by a semiclassical analysis, similar to that of [25], we showed the existence of

continuous bands. In fact, the variability of the total occupation number and the exis-

tence of continuous bands prevented one to solve the problem in terms of a standard Bethe

Ansatz. Interestingly, these continuous bands allow states with a monotonically growing

number of bosons. The duals of such states correspond to open strings increasing mono-

tonically their angular momentum at the expense of the giant. The analogy offered in [25]

of an open string with accelerating end points also works here. The instability is due to

the fact that for long enough strings, the tension will not support the weight due to the

centrifugal force.

We have seen that the ratio between the Z fields and covariant derivatives D mean

values for the ground state of the Hamiltonian (2.29) coincides exactly with the ratio

between the angular momentum in the ψ and η directions for an unexcited open string
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spinning with and along the giant. This gives support to the proposed dual operators (2.10).

In section 3 we have presented a semiclassical limit for the Polyakov action of open strings

ending on AdS giant gravitons. We chose coordinates in which the giant is static, and fixed

a gauge in which the string angular momentum along AdS, pη, is taken large and uniformly

distributed along the string. In this gauge and in a rigid string limit, the Polyakov action

and its Dirichlet boundary conditions8 coincided exactly with the non-linear sigma-model

action and boundary conditions of the semiclassical description of the mixing matrix of

anomalous dimensions. The agreement between these semiclassical actions is intuitively

correct within the context of the AdS/CFT correspondence. Firstly, the string angular

momentum pη taken large is the geometrical counterpart of the a large number of sites in

the Hamiltonian. Secondly, the gauge choice that distributes pη uniformly is natural, since

in the continuum limit the number of sites is uniformly rated by a continuous variable σ.

One of the motivations for studying AdS giant gravitons was that, in contrast to sphere

giant gravitons, there is no upper bound for their angular momentum. In this regard, it

is particularly interesting to consider the limit α → ∞ of the Hamiltonian (2.29). In that

limit the Hamiltonian can be diagonalized perturbatively and the terms proportional to α2

in (2.29) serve to define a simple unperturbed Hamiltonian which, in our base, turns out

to be diagonal. A one boson state in the kth site is an eigenstate with eigenvalue

E0
k = λα2 (L + 1)

k(L + 1 − k)
. (4.1)

The first excitations of the unperturbed Hamiltonian are then of order λα2/L. Although a

perturbative treatment might be a fairly valid approximation for the large α limit of (2.29),

it is clear that the one-loop approximation is no longer correct when taking λ → ∞, as

in the BMN limit. Thus, it would be inappropriate to compare the large α limit of the

one-loop Hamiltonian, with any string theory result.

As a final comment, we would like to point out that the bosonic labeling developed

in section 2 might be useful for studying other setups. Recently in [34], string bits in

condensates of BPS configurations [35] and their relation to giant magnons [36], were

conveniently characterized using a similar bosonic labeling for single trace operators in

su(2) and su(3) sub-sectors. In terms of the coordinates and gauge choices appropriate

for the bosonic labeling, the string bits or magnons are simply depicted as straight lines.

We speculate that the bosonic labeling developed here might be useful to explore similar

magnon excitations in the sl(2) sub-sector.
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A. Conventions and some combinatorial properties

We work with double line notation for the gauge theory. All fields are in the adjoint

representation of the gauge group, e.g. Zi
j = Za(T a)ij , with T a the generators of U(N) in

the fundamental representation normalized as tr(T aT b) = δab. The key identity is

(T a)ij(T
a)kl = δi

lδ
k
j (A.1)

We list below some properties of the totally symmetric tensor that are useful for the

calculations of AdS giant gravitons. The totally symmetric tensor of rank p is defined as

S
i1···ip
j1···jp

≡
∑

σ

δi1
jσ(1)

· · · δip
jσ(p)

, (A.2)

the summation being over all possible permutations σ. In (A.2), p can be any integer and

i1, · · · , ip and j1, · · · , jp range from 1 to N . Simple examples are

Si
j = δi

j

Sij
kl = δi

kδ
j
l + δi

lδ
j
k (A.3)

Some useful properties of the S tensors are

S
i1···ip
j1···jp

=

p
∑

x=1

δi1
jx

S
i2 . . . ip
j1···jx−1jx+1···jp

(A.4)

S
i1···ikik+1···ip
i1···ikjk+1···jp

=
(N + p − 1)!

(N + p − 1 − k)!
S

ik+1···ip
jk+1···jp

(A.5)

Si1···ik
j1···jk

S
j1···jp

l1···lp
= k!S

i1···ikjk+1···jp

l1 . . . lp
(A.6)

Using the previous relations, it is possible to obtain the following contractions for two S

tensors,

S
i1···ip−1a
j1···jp−1bS

j1···jp−1c
i1···ip−1d =

(N + p − 1)!(p − 1)!

N !

(

δa
b δc

d +
(p − 1)

(N + 1)
Sac

bd

)

(A.7)

S
i1···ip−1ag
j1···jp−1bhS

j1···jp−1ce
i1···ip−1df =

(N + p − 1)!(p − 2)!

(N + 1)!

(

Sag
bhSce

df +
(p − 2)(p − 3)

(N + 2)(N + 3)
Sagce

bhdf

+
(p − 2)

(N + 2)

(

δg
hSace

bdf + δg
b Sace

hdf + δa
hSgce

bdf + δa
b Sgce

hdf

))

(A.8)

B. Open strings in the pp-wave limit

In this appendix we take a Penrose limit of the AdS5 × S5 geometry for the null geodesic:

ρ = ρ0, t = ψ = η = λ discussed in eq. (3.6). The limit is accomplished by defining a

linear diffeomorphism to new coordinates and taking the R → ∞ limit. The coordinate u

playing the rôle of parameter along the curve must appear, as discussed in section 3, with

the same coefficient in t, ψ and η. The remaining coefficients for the linear transformation

can be fixed by demanding the metric to be well-defined in the R → ∞ limit.
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Consider the following change of coordinates,

t = u +
v

R2 cosh2 ρ0
, ρ = ρ0 +

y

R

ψ = u − v

R2 cosh2 ρ0
− tanh ρ0

x

R
, θ =

r

R

η = u − v

R2 cosh2 ρ0

+
x

R cosh ρ0 sinh ρ0
, ϕ =

z

R sinh ρ0
. (B.1)

keeping ξ and Ω′
3 variables unchanged. After taking R → ∞, the metric (3.1) becomes,

ds2 = −4dudv + 4ydudx − (r2 + z2)du2 + dx2 + dy2 + dz2 + z2dξ2 + dr2 + r2dΩ′
3
2
. (B.2)

In terms of cartesian coordinates

z1 = z sin ξ , z4 = r sin ϕ′ cos ξ′

z2 = z cos ξ , z5 = r cos ϕ′ sin η′ ,

z3 = r sin ϕ′ sin ξ′ , z6 = r cos ϕ′ cos η′ , (B.3)

the metric (B.2) takes the form

ds2 = −4dudv + 4ydudx −
∑

a

z2
adu2 + dx2 + dy2 +

∑

a

dz2
a. (B.4)

This is the well known maximally supersymmetric pp-wave of type IIB supergravity [4]

displayed in unusual “magnetic” coordinates. This can be explicitly seen by an appropriate

change of variables [37, 38].

The AdS giants attached strings that we consider have two different angular momenta:

one related to the spinning along the ψ direction of the S5 called Jψ in (3.9) and a second

one Jη along the η direction of the S3 ⊂ AdS5 (see eqs. (3.1)-(3.2)). For weakly excited

strings, the quantization on the pp-wave geometry (B.4) is a good approximation. We

focus on the bosonic sector of the corresponding superstring action. In particular, on

the excitation modes of coordinates x and y in (B.4) which satisfy Dirichlet boundary

conditions.

The metric (B.4) coincides with the one considered in [25], so we can then borrow

the complete analysis of oscillation modes and the canonical quantization done in it. The

light-cone Hamiltonian expressed in terms of the oscillator operators βm, β̃m, β†
m and β̃†

m

of the x and y coordinates is

Hxy
lc =

1

8α′2pu

∫ 2πα′pu

0
dσ

(

ẋ2 + ẏ2 + x′2 + y′
2
)

=
1

2α′pu

∑

n>0

(

ω−
n β̃†

nβ̃n + ω+
n β†

nβn

)

, (B.5)

where ω±
n =

√

(2α′pu)2 + n2 ± 2α′pu. Thus, the energy of each excitation is

Ẽn =

√

1 +
n2

(2α′pu)2
− 1 , En =

√

1 +
n2

(2α′pu)2
+ 1 . (B.6)

– 22 –



J
H
E
P
1
1
(
2
0
0
6
)
0
5
9

To illuminate this result, we express the light-cone charges

Hlc =−pu = i
∂

∂u
, (B.7)

pu =−1

2
pv =

i

2

∂

∂v
. (B.8)

in terms of the conserved charges ∆, Jψ and Jη corresponding to the original global coor-

dinates t, ψ and η. The change of coordinates (B.1) gives,

Hlc = i

(
∂

∂t
+

∂

∂ψ
+

∂

∂η

)

= ∆ − Jψ − Jη , (B.9)

pu =
i

2R2 cosh2 ρ0

(
∂

∂t
− ∂

∂ψ
− ∂

∂η

)

=
∆ + Jψ + Jη

2R2 cosh2 ρ0

. (B.10)

To make contact with the gauge theory calculations, we denote

Jη = L , (B.11)

Jψ =
L

sinh2 ρ0

=
N

p
L . (B.12)

L denotes, on the gauge theory side, the total number of covariant derivatives present in

the word W (see eq. (2.21)). The sum of angular momenta takes the form

Jη + Jψ = L

(

1 +
N

p

)

= L
α2

α2 − 1
, (B.13)

where α is given by (2.17). To get a finite light-cone energy we required that ∆ ' α2L/(1−
α2). Therefore,

pu ' L

R2(α2 − 1)
=

L√
8λπ(α2 − 1)

. (B.14)

Here the relations R4 = 4πgsNα′2 and λ = gsN/2π have been used. Finally, the string

excitation energies in terms of gauge theory parameters are

Ẽn =

√

1 +
2λπ2(α2 − 1)2n2

L2
− 1 , En =

√

1 +
2λπ2(α2 − 1)2n2

L2
+ 1 . (B.15)

When considering the BMN limit: λ/L2 fixed and small as L → ∞, the expansion of the

square roots gives,

Ẽn ≈ λπ2(α2 − 1)2n2

L2
, En ≈ 2 +

λπ2(α2 − 1)2n2

L2
. (B.16)
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